Blow-up in the Parabolic Scalar Curvature Equation
نویسنده
چکیده
The parabolic scalar curvature equation is a reaction-diffusion type equation on an (n − 1)-manifold Σ, the time variable of which shall be denoted by r. Given a function R on [r0, r1)×Σ and a family of metrics γ(r) on Σ, when the coefficients of this equation are appropriately defined in terms of γ and R, positive solutions give metrics of prescribed scalar curvature R on [r0, r1)× Σ in the form g = udr + rγ. If the area element of rγ is expanding for increasing r, then the equation is, in fact, uniformly parabolic, and the basic existence problem is to take positive initial data at some r = r0 and solve for u on the maximal interval of existence, which above was implicitly assumed to be I = [r0, r1); one often hopes that r1 = ∞. However, the case of greatest physical interest, R > 0, often leads to blow up in finite time so that r1 < ∞. It is the purpose of the present work to investigate the situation in which the blow-up nonetheless occurs in such a way that g is continuously extendible to M̄ = [r0, r1]× Σ as a manifold with totally geodesic outer boundary at r = r1.
منابع مشابه
Kähler Surfaces And
A complex ruled surface admits an iterated blow-up encoded by a parabolic structure with rational weights. Under a condition of parabolic stability, one can construct a Kähler metric of constant scalar curvature on the blow-up according to [18]. We present a generalization of this construction to the case of parabolically polystable ruled surfaces. Thus we can produce numerous examples of Kähle...
متن کاملA note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملNonlinear Parabolic Problems on Manifolds, and a Nonexistence Result for the Noncompact Yamabe Problem
We study the Cauchy problem for the semilinear parabolic equations ∆u−Ru+ up − ut = 0 on Mn × (0,∞) with initial value u0 ≥ 0, where Mn is a Riemannian manifold including the ones with nonnegative Ricci curvature. In the Euclidean case and when R = 0, it is well known that 1 + 2 n is the critical exponent, i.e., if p > 1+ 2 n and u0 is smaller than a small Gaussian, then the Cauchy problem has ...
متن کاملExamples of Non-isolated Blow-up for Perturbations of the Scalar Curvature Equation on Non Locally Conformally Flat Manifolds
Solutions to scalar curvature equations have the property that all possible blow-up points are isolated, at least in low dimensions. This property is commonly used as the first step in the proofs of compactness. We show that this result becomes false for some arbitrarily small, smooth perturbations of the potential.
متن کامل